Photo-induced guest–host interactions produce grain boundaries between smectic blocks
نویسندگان
چکیده
منابع مشابه
Dislocation interactions mediated by grain boundaries
The dynamics of dislocation assemblies in deforming crystals indicates the emergence of collective phenomena, intermittent fluctuations and strain avalanches. In polycrystalline materials, the understanding of plastic deformation mechanisms depends on grasping the role of grain boundaries on dislocation motion. Here the interaction of dislocations and elastic, lowangle grain boundaries is studi...
متن کاملGiant-block twist grain boundary smectic phases.
Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of planar layers of thickness l(b) > 200 nm terminated by GBs that are sharp, mediating large angular jumps in ...
متن کاملTransition between Low and High Angle Grain Boundaries
Institut für Metallkunde und Metallphysik, RWTH Aachen, 52056 Aachen, Germany Carnegie Mellon University, Pittsburgh PA 15213, USA Abstract The migration of planar, symmetric tilt grain boundaries with different tilt axes was investigated. The driving force for the grain boundary migration was due to an external mechanical stress field. Low as well as high angle grain boundaries can move under ...
متن کاملDiscovering the building blocks of atomic systems using machine learning: application to grain boundaries
Machine learning has proven to be a valuable tool to approximate functions in high-dimensional spaces. Unfortunately, analysis of these models to extract the relevant physics is never as easy as applying machine learning to a large data set in the first place. Here we present a description of atomic systems that generates machine learning representations with a direct path to physical interpret...
متن کاملIrradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Advances
سال: 2020
ISSN: 2633-5409
DOI: 10.1039/d0ma00145g